Корректирующее кодирование (хемминг, РирСоломон)
Если использовать код хемминга то будет потрачено 8 бит. Существует ли какой либо двойной код хемминга, позволяющий корректировать не 1, а 2 бита? Так же мне не понятно почему обычное кодирование хемминга не позволяет обнаруживать тройные, четерные ошибки?
На счет кодов рида соломона - все кодеры что я встречал в инете (штук работают с 8, 16, 32 битами. Однако мне они не подходят, так как такой код может исправить ошибку только в одной группе из 8-ми бит, в то время как в пакете может быть повреждено семь бит в разных местах. Возникает вопрос - может ли код рида соломона быть битовым?
Для справки выдержка из инфы по этой теме:
#define m 8 // степень RS-полинома (согласно Стандарта ECMA-130 - восемь)
#define n 255 // n = 2 * m - 1 (длина кодового слова)
#define t 1 // количество ошибок, которые мы хотим скорректировать
#define k 253 // k = n - 2 * t (длина информационного слова)
Согласно расчетам k битовым он быть не может. Оданко я непонимаю почему. Может кто то сможет мне это обьяснить.